

## VI Semester B.C.A. Examination, September/October 2022 (CBCS) (F+R) (2016-17 and Onwards) COMPUTER SCIENCE

**BCA 601: Theory of Computation** 

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all Sections.

## SECTION - A

Answer any ten questions. Each question carries two marks.

 $(10 \times 2 = 20)$ 

- Define finite automata. Give the mathematical representation of finite automata.
- 2. Find the E-closure of all states for the given E-NFA.



- 3. Define Kleen closure with an example.
- 4. Construct a regular expression for the language consisting of all strings of a's and b's beginning with 'a' and ending with 'ab'.
- Define left most derivation with an example.
- 6. Obtain a grammar to generate the set of all strings with exactly one a, over  $\Sigma = \{a, b\}$ .
- 7. What is an unit production?



8. Draw a parse tree for the following string w = id + id \* id having production rules

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow id$$

Where 
$$V = \{E\}, T = \{id\}, S = \{E\}.$$

- 9. Define push down automata.
- 10. Explain ID (Instantaneous Description) of turing machine.
- 11. Define post correspondence problem.
- 12. Write the meaning of the regular expression 0\* 1\* 2\*.

Answer any five questions. Each question carries 5 marks.

 $(5 \times 5 = 25)$ 

13. Check whether the strings "a a bab" and "baba" are accepted by the following DFA (Deterministic Finite Automata).



- 14. Design a DFA that accepts strings of a's and b's having a substring "aa".
- 15. Differentiate between DFA, NFA and E-NFA.
- 16. Construct an E-NFA for (0\*0) + (1\*0).
- 17. Design a grammar to generate the language  $L = \{a^n b^n | n \ge 0, m > n\}$ .



18. Eliminate the useless symbols in the following grammar:

 $S \rightarrow AB$ 

 $A \rightarrow a$ 

 $B \rightarrow b|C$ 

 $E \rightarrow d$ 

- 19. Explain the types of turing machines.
- 20. Construct the PDA for the grammar  $S \rightarrow aSbb|a$ .

(PDA: Push Down Automata).

## SECTION - C

Answer any three questions. Each question carries 15 marks.

 $(15 \times 3 = 45)$ 

21. Construct a DFA for the regular expression (a|b) \* abb.

15

22. Find a DFA equivalent to the following NFA N = ( $\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\}$ ) where  $\delta$  is defined as

| $\delta_{D}$      | a                                  | b                                  |
|-------------------|------------------------------------|------------------------------------|
| $\rightarrow q_0$ | {q <sub>0</sub> , q <sub>1</sub> } | {q <sub>2</sub> }                  |
| $q_1$             | {q <sub>0</sub> }                  | {q <sub>1</sub> }                  |
| * q <sub>2</sub>  |                                    | {q <sub>0</sub> , q <sub>1</sub> } |

DFA: Deterministic Finite Automata

NFA: Non-deterministic Finite Automata.

15

23. a) Verify if the following grammar is ambiguous.

7

 $S \rightarrow aB|bA$ 

 $A \rightarrow aS|bAA|a$ 

B → bS|aBB|b

b) Remove E-productions from the following CFG (Context Free Grammar).

 $S \rightarrow XYX$ 

 $X \rightarrow 0X|E$ 

 $Y \rightarrow 1X|E$ 



7

8

15

24. a) Obtain a TM to accept a string w of a's and b's such that  $N_a(w)$  is equal to  $N_b(w)$ .

(TM: Turing Machine)

- b) State and prove pumping lemma for regular language.
  - ... and prove pumping lemma for regular language.
- 25. Convert the given grammar to Chomsky Normal Form (CNF).

S → AB|CA

B → BC|AB

 $A \rightarrow a$ 

 $C \rightarrow aB|b$ 

## SECTION - D

Answer any one of the following questions. Each carries 10 marks.

 $(1 \times 10 = 10)$ 

26. Minimize the following Deterministic Finite Automata (DFA).

10



27. Construct a Push Down Automata (PDA) to accept the language  $L(m) = \{w \subset w^R | w \in (a + b)^*\} \text{ where } w^R \text{ is the reverse of } w.$ 

10